import numpy as np
import matplotlib.pyplot as plt
from IPython.display import display,Math
print("Euler's formula")
display(Math('e^{ik} = \\cos(k) + i\\sin(k)'))
display(Math('me^{ik} = m(\\cos(k) + i\\sin(k))')) # m: magnitude, k: angle
display(Math('e^{i0} = 1 + 0i'))
display(Math('e^{i\\pi/2} = 0 + 1i'))
display(Math('e^{i\\pi} = -1 + 0i'))
display(Math('\\quad \\longrightarrow \\quad e^{i\\pi} + 1 = 0')) # the most elegant equation
k = np.pi/6
m = 2.3
eul = m*np.exp(1j*k)
cis = m*(np.cos(k) + 1j*np.sin(k)) #cosine imagenary sine
print(cis)
print(eul)
mag = np.abs(eul)
ang = np.angle(eul)
print(m,mag)
print(k,ang)
plt.polar([0,ang],[0,mag],'r')
plt.polar(k,m,'bo')
plt.show()
Exercise
def eulerFromCosSine():
re = eval(input('cosine part: '))
im = eval(input('sine part: '))
m = np.sqrt(re**2 + im**2)
k = np.arctan2(im,re)
plt.polar([0,k],[0,m])
plt.title('me$^{i\\phi}$, m=%g, $\\phi$= %g' %(m,k))
plt.thetagrids([0,45,130,200,222])
plt.show()
eulerFromCosSine()
np.pi/4