In [1]:
import sympy as sym
from IPython.display import display, Math
sym.init_printing()
In [2]:
x,y,z = sym.symbols('x,y,z')
ex = x**y * x**z

display(ex)
display(sym.simplify(ex))
$$x^{y} x^{z}$$
$$x^{y + z}$$
In [3]:
ex1 = x**y * x**z
ex2 = x**y / x**z
ex3 = x**y * y**z

display(Math('%s = %s' %(ex1,sym.simplify(ex1))))
display(Math('%s = %s' %(sym.latex(ex1),sym.latex(sym.simplify(ex1)))))
display(Math('%s = %s' %(sym.latex(ex2),sym.latex(sym.simplify(ex2)))))
display(Math('%s = %s' %(sym.latex(ex3),sym.latex(sym.simplify(ex3)))))
$\displaystyle x**y*x**z = x**(y + z)$
$\displaystyle x^{y} x^{z} = x^{y + z}$
$\displaystyle x^{y} x^{- z} = x^{y - z}$
$\displaystyle x^{y} y^{z} = x^{y} y^{z}$
In [4]:
lhs = 4
rhs = 6-2

sym.Eq(lhs, rhs)
Out[4]:
$$\mathrm{True}$$
In [5]:
sym.Eq(ex1, sym.simplify(ex1))
Out[5]:
$$x^{y} x^{z} = x^{y + z}$$
In [6]:
sym.Eq(ex1- sym.simplify(ex1))
Out[6]:
$$x^{y} x^{z} - x^{y + z} = 0$$
In [7]:
sym.Eq(sym.expand(ex1- sym.simplify(ex1)))
Out[7]:
$$\mathrm{True}$$
In [8]:
display(sym.powsimp(ex1))
$$x^{y + z}$$