$ \left[ \begin{matrix} 1 \\ 0 \\ 2 \\ 5 \\ -2 \end{matrix} \right]^T = \left[ \begin{matrix} 1 \quad 0 \quad 2 \quad 5 -2\end{matrix} \right]$
$ \left[ \begin{matrix} 1 \quad 0 \quad 2 \quad 5 -2\end{matrix} \right]^T = \left[ \begin{matrix} 1 \\ 0 \\ 2 \\ 5 \\ -2 \end{matrix} \right]$
$V^{TT}=V$
$ \left[ \begin{matrix} 1 \quad 5\\ 0 \quad 6 \\ 2 \quad 8 \\ 5 \quad 3 \\ -2 \quad 0 \end{matrix} \right]^T = \left[ \begin{matrix} 1 \quad 0 \quad 2 \quad 5 \quad -2 \\ 5 \quad 6 \quad 8 \quad 3 \quad 0 \end{matrix} \right]$
import numpy as np
import matplotlib.pyplot as plt
r = np.random.randn(1,10)
rt1 = np.transpose(r)
rt2 = r.T
print(np.shape(r))
print(np.shape(rt1))
print(np.shape(rt2))
mat = np.random.randn(8,4)
matT = mat.T
fig,ax = plt.subplots(1,2)
ax[0].imshow(mat)
ax[0].set_title('M')
ax[1].imshow(matT)
ax[1].set_title('$M^T$')
for i in ax:
i.set_xticks([])
i.set_yticks([])
plt.show()
$ \left[ \begin{matrix} \quad 1 \quad -1 \quad \quad 0\\ -1 \quad -2 \quad -4 \\ \quad 0 \quad -4 \quad \quad 5 \end{matrix} \right]$
$\text {Symmetric}: A = A^T$
m = 4
n = 9
amat = np.random.randn(m,n)
# palindrome: 回文
amatama = amat@amat.T
# show that this is square
print(np.shape(amatama))
# show that this is symmetric
print(amatama - amatama.T )