In [1]:
import sympy as sym
from IPython.display import display,Math
import sympy.plotting.plot as symplot
In [2]:
display(Math('f_a(x) = \\cos(x + \\sin(x))+a'))
display(Math('a \\: \\epsilon \\: \{ 0,1,2,3 \}'))
$\displaystyle f_a(x) = \cos(x + \sin(x))+a$
$\displaystyle a \: \epsilon \: \{ 0,1,2,3 \}$
In [4]:
x,a = sym.symbols('x,a')

f = sym.cos(x + sym.sin(x)) + a
colors = 'brkm'

for ai in range(0,4):
    if ai==0:
        p = symplot(f.subs(a,ai),show=False,label='a=%s' + str(ai),line_color=colors[ai])
    else:
        p.extend(symplot(f.subs(a,ai),show=False,label='a=%s' + str(ai),line_color=colors[ai]))
        
p.title = 'The functions'
p.legend = True
p.show()
In [5]:
for ai in range(0,4):
    if ai==0:
        p = symplot(sym.diff(f.subs(a,ai)),show=False,label='a=%s' + str(ai),line_color=colors[ai])
    else:
        p.extend(symplot(sym.diff(f.subs(a,ai)),show=False,label='a=%s' + str(ai),line_color=colors[ai]))
        
p.title = 'The derivatives'
p.legend = True
p.show()