In [1]:
import sympy as sym
from IPython.display import display,Math

Exercise

$\int f(x)' dx = f(x)'$

$\quad f(x) = 2x^3 + \sin(x)'$

In [2]:
x = sym.symbols('x')

f = 2*x**3 + sym.sin(x)

df = sym.diff(f)
idf = sym.integrate(df)

display(Math('f(x) = %s' %sym.latex(f)))
display(Math('f\' = %s' %sym.latex(df)))
display(Math('\\int (f\') \\: dx = %s' %sym.latex(idf))) # '+ C' should be added
$\displaystyle f(x) = 2 x^{3} + \sin{\left (x \right )}$
$\displaystyle f' = 6 x^{2} + \cos{\left (x \right )}$
$\displaystyle \int (f') \: dx = 2 x^{3} + \sin{\left (x \right )}$