import numpy as np
import scipy as sp
import matplotlib.pyplot as plt
from IPython.display import display,Math
display(Math('ax^2 + bx + c = 0'))
display(Math('x = \\frac{-b \\pm \\sqrt {b^2 - 4ac}}{2a}'))
a = 3
b = 7
c = 5
quadeqP = (-b + np.sqrt(b**2 - 4*a*c)) / (2*a)
quadeqN = (-b - np.sqrt(b**2 - 4*a*c)) / (2*a)
print(quadeqP,quadeqN)
quadeqP = (-b + sp.sqrt(b**2 - 4*a*c)) / (2*a)
quadeqN = (-b - sp.sqrt(b**2 - 4*a*c)) / (2*a)
print(quadeqP,quadeqN)
def quadeq(a,b,c):
out = sp.zeros(2)
out[0] = (-b + sp.sqrt(b**2 - 4*a*c)) / (2*a)
out[1] = (-b - sp.sqrt(b**2 - 4*a*c)) / (2*a)
return out
sol = quadeq(2,7,5)
sol
a = 1
b = range(-5,6)
c = range(-2,11)
M = np.zeros((len(b),len(c)))
for bi in range(0,len(b)):
for ci in range(0,len(c)):
M[bi,ci] = quadeq(a,b[bi],c[ci])[0]
plt.imshow(M,extent=[c[0],c[-1],b[0],b[-1]])
plt.xlabel('c')
plt.ylabel('b')
plt.title('a=' + str(a))
plt.colorbar()
plt.show()