In [1]:
import sympy as sym
from IPython.display import display, Math
In [2]:
from sympy.abc import x

term1 = (4*x+5)
term2 = x

print(term1*term2)
print(sym.expand(term1*term2))
display(Math(sym.latex(sym.expand(term1*term2))))
x*(4*x + 5)
4*x**2 + 5*x
$\displaystyle 4 x^{2} + 5 x$
In [3]:
term3 = x-7

display(Math(sym.latex(term1*term3)))
display(Math(sym.latex(sym.expand(term1*term3))))
$\displaystyle \left(x - 7\right) \left(4 x + 5\right)$
$\displaystyle 4 x^{2} - 23 x - 35$
In [4]:
from sympy.abc import y

expr = x*(2*y**2-5**x/x)
display(Math(sym.latex(expr)))
display(Math(sym.latex(sym.expand(expr))))
$\displaystyle x \left(- \frac{5^{x}}{x} + 2 y^{2}\right)$
$\displaystyle - 5^{x} + 2 x y^{2}$
In [5]:
%whos
Variable   Type        Data/Info
--------------------------------
Math       type        <class 'IPython.core.display.Math'>
display    function    <function display at 0x10abfd840>
expr       Mul         x*(-5**x/x + 2*y**2)
sym        module      <module 'sympy' from '/an<...>kages/sympy/__init__.py'>
term1      Add         4*x + 5
term2      Symbol      x
term3      Add         x - 7
x          Symbol      x
y          Symbol      y
In [6]:
Fxy = (4+x)*(2-y)

numrange = range(0,3)

for xi in numrange:
    for yi in numrange:
        print('When x=%g and y=%g, f(x,y)=%g' %(xi, yi, Fxy.subs({x:xi,y:yi})))
When x=0 and y=0, f(x,y)=8
When x=0 and y=1, f(x,y)=4
When x=0 and y=2, f(x,y)=0
When x=1 and y=0, f(x,y)=10
When x=1 and y=1, f(x,y)=5
When x=1 and y=2, f(x,y)=0
When x=2 and y=0, f(x,y)=12
When x=2 and y=1, f(x,y)=6
When x=2 and y=2, f(x,y)=0