import sympy as sym
import numpy as np
import math
from IPython.display import display, Math
from sympy.abc import w,x,y,z,a,b,c,d
sym.init_printing()
p1 = 4*x**5 - x
p2 = 2*x**3 - x
p1
p2
display(Math('\\frac{%s}{%s} = %s' %(sym.latex(p1),sym.latex(p2),sym.latex(p1/p2))))
display(Math('\\frac{%s}{%s} = %s' %(sym.latex(p1),sym.latex(p2),sym.latex(sym.expand(p1/p2)))))
display(Math('\\frac{%s}{%s} = %s' %(sym.latex(p1),sym.latex(p2),sym.latex(sym.simplify(p1/p2)))))
display(Math('\\frac{%s}{%s} = %s' %(sym.latex(p1),sym.latex(p2),sym.latex(sym.sympify(p1/p2)))))
display(Math('\\frac{%s}{%s} = %s' %(sym.latex(p1),sym.latex(p2),sym.latex(sym.solve(p1/p2)))))
f = 3/4
f
f = sym.sympify(3)/4
finfo = sym.fraction(f)
finfo
type(finfo)
f = sym.sympify(3)
finfo = sym.fraction(f)
finfo
pNum = x**6 + 2*x**4 + 6*x -y
pDen = x**3 + 3
pNum
pDen
for yi in range(5,16):
tempnum = pNum.subs(y,yi)
display(Math('%s = %s' %(sym.latex(tempnum/pDen), sym.latex(sym.simplify(tempnum/pDen)))))
#display(tempnum)
#display(sym.fraction(sym.simplify(tempnum/pDen))[1]) # extract denominator
if sym.fraction(sym.simplify(tempnum/pDen))[1]==1:
rightanswer = yi
print('The answer the satisfies our goal is y=%g' %rightanswer)