In [1]:
import sympy as sym
import numpy as np
import math

from IPython.display import display, Math
from sympy.abc import w,x,y,z,a,b,c,d
sym.init_printing()
In [2]:
x = sym.symbols('x')

expr = 4*x > 8
expr
Out[2]:
$$4 x > 8$$
In [3]:
sym.solve(expr)
Out[3]:
$$2 < x \wedge x < \infty$$
In [4]:
sym.oo > 123402873659187236491273491874
Out[4]:
$$\mathrm{True}$$
In [5]:
expr = (x-1)*(x+3) > 8
sym.solve(expr)
Out[5]:
$$\left(-\infty < x \wedge x < - 2 \sqrt{3} - 1\right) \vee \left(x < \infty \wedge -1 + 2 \sqrt{3} < x\right)$$
In [6]:
ex = a*x > b**2/c
ex
Out[6]:
$$a x > \frac{b^{2}}{c}$$
In [7]:
ex = 3*x/2 + (4-5*x)/3 <= 2 - (5*(2-x))/4
ex
Out[7]:
$$- \frac{x}{6} + \frac{4}{3} \leq \frac{5 x}{4} - \frac{1}{2}$$
In [8]:
sym.solve(ex,x)
Out[8]:
$$\frac{22}{17} \leq x \wedge x < \infty$$