In [1]:
import sympy as sym
import numpy as np
import math

from IPython.display import display, Math
from sympy.abc import w,x,y,z,a,b,c,d
sym.init_printing()
In [2]:
D = dict(fruit=['banana', 'apple'], numbers=[1,3,4,2,7])

D
Out[2]:
{'fruit': ['banana', 'apple'], 'numbers': [1, 3, 4, 2, 7]}
In [3]:
D.keys()
Out[3]:
dict_keys(['fruit', 'numbers'])
In [4]:
D['fruit']
Out[4]:
['banana', 'apple']
In [5]:
D['fruit'][0]
Out[5]:
'banana'
In [6]:
D.get('fruit')
Out[6]:
['banana', 'apple']
In [7]:
D.get('fruit')[0]
Out[7]:
'banana'
In [8]:
for items in D:
    print(D[items])
['banana', 'apple']
[1, 3, 4, 2, 7]
In [9]:
D = dict(eqsWithX = [4*x-6,x**2-9],eqsWithY = [sym.sin(y)])

for keyi in D:
    print('Solutions for equations involving ' + keyi[-1] + ' : ')
    
    for eqi in D[keyi]:
        leftpart = sym.latex(eqi) + ' = 0'
        midpart = '\\quad \\Rightarrow \\quad ' + keyi[-1] + ' = '
        rightpart = sym.latex(sym.solve(eqi))
        display(Math('\\quad\\quad ' + leftpart + midpart + rightpart))
Solutions for equations involving X : 
$\displaystyle \quad\quad 4 x - 6 = 0\quad \Rightarrow \quad X = \left [ \frac{3}{2}\right ]$
$\displaystyle \quad\quad x^{2} - 9 = 0\quad \Rightarrow \quad X = \left [ -3, \quad 3\right ]$
Solutions for equations involving Y : 
$\displaystyle \quad\quad \sin{\left (y \right )} = 0\quad \Rightarrow \quad Y = \left [ 0, \quad \pi\right ]$